

MOOR JOURNAL OF AGRICULTURAL RESEARCH

Journal homepage: https://iart.gov.ng/moorjournal/index.php/mjar/

Soil Quality Assessment for Urban Agriculture in Two Cities of Southwest Nigeria Adelana A.O.

Institute of Agricultural Research and Training, Obafemi Awolowo University, Moor Plantation, P.M.B. 5029, Ibadan, Nigeria.

Article Info

Article history:

Received: May 13, 2025 Revised: July 19, 2025 Accepted: July 25, 2025

Keywords:

Urban agriculture Soil quality, Principal Component Analysis Hierarchical clustering Soil management

Abstract

Urban agriculture (UA) is increasingly becoming vital for food security and sustainable urban development, yet urban soils often face challenges like compaction, nutrient depletion, and poor soil structure. This study was carried out to assess soil quality across 12 UA sites in Akure and Okitipupa, southwest Nigeria, evaluating physical, chemical, and biological properties in order to guide management strategies. Soil samples were analyzed for texture, bulk density (BD), hydraulic conductivity (K_s), water-stable aggregates (WSA), pH, organic carbon (C_{org}), total nitrogen (N_{tot}), available phosphorus (AvP), exchangeable cations, microbial biomass carbon (C_{mic}), nitrogen (N_{mic}), and soil microbial respiration (SMR). Results showed that Akure soils were sandy loam, slightly acidic (pH 5.91-6.76), with variable C_{org} (6.05–19.65 g kg⁻¹) and low N_{tot} (0.73–3.63 g kg⁻¹). Okitipupa soils were loamy sand to sandy loam, moderately acidic (pH 4.93-5.96), with higher C_{org} (8.76–22.71 g kg⁻¹). Principal component analysis (PCA) revealed that the first two components explained 75.4% of the variance, with PC1 driven by texture and K_s, and PC2 by C_{org}, N_{tot}, and AvP. Hierarchical clustering grouped the UA sites into four clusters: Cluster 1 (sandy, acidic, nutrient-poor), Cluster 2 (compacted, poor soil structure), Cluster 3 (fertile, loamy, high C_{org}/N_{tot}), and Cluster 4 (moderate fertility, erosion-prone). Management recommendations include organic amendments and cover crops for Cluster 1, deep tillage and raised beds for Cluster 2, crop rotation and minimal tillage for Cluster 3, and mulching with conservation tillage for Cluster 4. These results highlight urban soil heterogeneity and provide tailored strategies to enhance agricultural productivity in southwest Nigeria.

Introduction

The re-localization of food systems is gaining attention due to various economic factors, the expansion of urban areas leading to a decrease in agricultural land, growing environmental and health concerns, and an increasing urban population. Consequently, urban residents are increasingly encouraged to cultivate their own food (Lamine and Marsden, 2023; Aduloju *et al.*, 2024). Many experts argue that urban food production can enhance food accessibility and mitigate the environmental impacts of food transportation (Lee *et al.*, 2015; Caputo, 2022). This has led to a notable surge in interest in urban agriculture for these reasons and more, although the advantages and disadvantages of urban agriculture remain a topic of discussion (Goldstein *et*

Corresponding author: Tel: +2348034313599 Email address: aadelana@gmail.com (A.O. Adelana).

1595 – 4153 Copyright © 2025 MJAR

al., 2016). Urban agriculture involves growing food in urban or densely populated areas, making significant contributions to social, economic, and ecological well-being (Salomon et al., 2020). It takes various forms, particularly in developed countries where advanced techniques like hydroponics, vertical gardening, and LED lighting are becoming popular. However, the most common method remains using natural soil or soil-based media in raised beds or containers (Eigenbrod and Gruda, 2015). Given its importance for sustainable urban development and food security, there is an urgent need for comprehensive studies on urban soil quality as it relates to food production.

One of the main challenges facing urban agriculture is the poor condition of urban soil, which is often unsuitable for cultivation. These soils frequently suffer from degradation due to factors such as compaction, the removal of topsoil, and

inappropriate management practices. The process of urbanization significantly impacts soil quality, leading to reduced organic matter, increased heavy metal contamination, physical soil degradation, compaction, and a decline in the ability of water, air, and roots to penetrate the soil (Odewande and Abimbola, 2008; Adelana et al., 2023a; Adelana et al., 2023b). These changes negatively affect soil structure and fertility, making crop cultivation for food production more challenging. Evaluating the quality of urban soils for food production is crucial, as soil quality plays a vital role in determining the success and sustainability of agricultural endeavors in urban settings. Existing research on urban soil primarily focuses on the effects of urbanization on soil functionality and the resulting modifications to the physical and chemical properties of soils (McIvor et al., 2012; Joimel et al., 2016; Delbecque et al., 2022; Adelana et al., 2023a). However, there is a significant gap in studies addressing the overall quality of urban soils, encompassing their physical, chemical, and biological attributes, especially concerning urban agricultural practices in Nigeria.

Previous studies on urban soils in Nigeria have largely focused on the issue of heavy metal contamination (Olorundare et al., 2011; Abdu et al., 2011, 2012; Iwegbue and Martincigh, 2018; Famuyiwa et al., 2022; Kolawole et al., 2023). The results of these studies are often site-specific and show considerable variation influenced by distinct environmental conditions. However, there is a lack of comprehensive information regarding soil fertility, including available plant nutrients, soil physical characteristics, and microbial activity in the context of urban soil research in Nigeria (Abdulkadir et al., 2013). The existing literature suggests that urban agricultural sites benefit from a rich supply of plant nutrients sourced from various urban waste materials (Pasquini and Alexander, 2004; Alhassan et al., 2021). Additionally, findings indicate that the application of organic fertilizers tends to promote greater soil productivity compared to inorganic alternatives, primarily due to the carbon inputs they provide to the soil (Anikwe and Nwobodo, 2002). This study shows that the localization and assessment of soil quality are essential components for effective urban agricultural management. Consequently, a study was conducted in two urban locations, Akure and Okitipupa, located in southwest Nigeria. This

investigation involved an assessment of the soil properties that influence its overall quality. The objectives were to 1) evaluate the existing soil conditions, and 2) propose management strategies for the areas utilized for urban agriculture in these cities.

Materials and Methods Location description

The study was conducted at two locations in southwest Nigeria Akure and Okitipupa, located at coordinates 7° 17' N, 5° 13' E and 6° 30' N, 4° 42' E, respectively (Fig. 1). Both areas experience a humid tropical climate characterized by two main seasons: a brief dry season from December to February and a more extended wet season from March to November. The average annual temperatures are 27 °C in Akure and 25 °C in Okitipupa. In terms of rainfall, Akure receives an annual average of 1600 mm, while Okitipupa has a higher total of 2100 mm (Nigerian Meteorological Agency, 2020). As of 2025, Akure's estimated population is 665,238, with an urban population density of 5160 individuals per square kilometer. In contrast, Okitipupa has a projected population of 403,635 and an urban density of 4080 people per square kilometer (Macrotrends, 2025).

Field sampling

In this study, we evaluated 12 urban agricultural sites across two locations: 6 sites in Akure and 6 in Okitipupa, following the sampling criteria established by Pouyat et al. (2007) for urban environments. The urban agricultural plots have been used for the cultivation of maize (Zea mays), cassava (Manihot esculenta), and yam (Dioscorea spp.) for an average of 15 years, with annual slashing and burning of the litter. In some cases, mounds were created, and the plots were mulched with crop residues. No fertilizers were applied to these plots. Each plot was divided into four quadrants, and two random soil samples were collected at depth of 0-20 cm using a soil auger. The eight sub-samples at a site were mixed to form a composite sample. Additionally, undisturbed core samples, each 5 cm in length and with an inner diameter of 5 cm, were taken at each site using cylindrical core samplers. Penetration resistance (PR_{dry}) was measured with an Eijkelkamp penetrologger (Eijkelkamp Agrisearch Equipment, Netherlands). Fresh samples were also collected at the sampling locations and stored in coolers with ice packs for subsequent biological analysis.

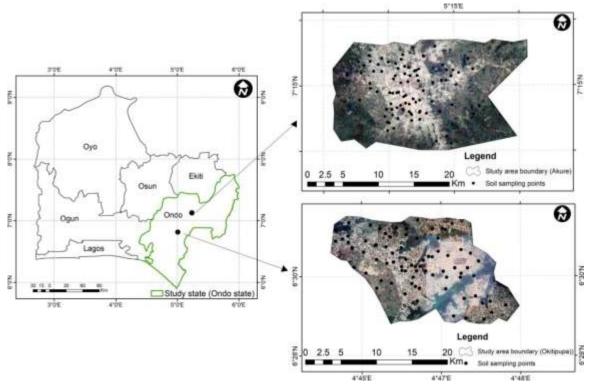


Fig. 1: Study locations in Akure and Okitipupa, southwest Nigeria

Laboratory analysis

Core samples were used to measure bulk density (BD) following Grossman and Reinsch (2002) and hydraulic conductivity (K_s) based on Reynolds et al. (2002). Water-stable aggregates (WSA) were determined using an Eijkelkamp wet sieving apparatus. Composite samples were air-dried, sieved through a 2-mm mesh, and analyzed for total nitrogen (N_{tot}) by the Kieldahl method, organic carbon (C_{org}) by loss on ignition, and available phosphorus (AvP) by spectrophotometric absorbance after Mehlich III extraction. Soil pH was measured in a 1:2 soil-towater suspension with a Jenway 3540 pH meter, and particle size distribution was determined using a modified Bouyoucos hydrometer method. Exchangeable cations (Mg, Ca, K, Na) were extracted with Mehlich III, after which Ca and Mg were determined by atomic absorption spectrophotometry, and K and Na by flame photometry. Microbial biomass carbon and nitrogen (C_{mic} and N_{mic}) were assessed in fresh soil samples using the chloroform fumigation extraction method. The amount of carbon dioxide emitted from the soil due to the action of microorganisms breaking down organic matter was measured as soil microbial respiration (SMR) (Zibilske, 1994).

Statistical analysis

Data analysis and graphical visualizations were performed using R statistical software version 4.2.1 (R Core Team, 2022). A descriptive analysis was performed on the individual soil variables from both locations. Data transformations were applied as necessary to address variance related to specific properties. Principal component analysis (PCA) was performed on the dataset to assess the differences in soil properties between the sites at each location. The PCA was executed using the "FactoMineR" package, while the R package "factoextra" was used for result visualization (Lê et al., 2008). Additionally, hierarchical analysis was conducted to validate the PCA findings (Köhn and Hubert, 2015), providing a detailed examination of the similarities and differences among the sites. A one-way analysis of variance (ANOVA) was performed to assess the impact of soil properties on the variations between the sites, with mean separation conducted using the Duncan Multiple Range Test at $\alpha \le 0.05$.

Results and Discussion

Soil physical properties in relation to soil quality

The soil physical properties in Akure indicate a sandy loam texture (Table 1). The Eyin Ala and Isinkan sites had significantly higher sand content and lower clay content, while the Ologede 2 site had the highest silt content. Despite the differences in sand,

silt, and clay content, the textural class of the soil remained consistently sandy loam. Lal and Shukla (2004) reported that soil textural class is typically stable over time and is not easily altered by soil management practices. The average BD of the urban agricultural soils in Akure was measured at 1.31 Mg m⁻³, varying between 1.11 and 1.59 Mg m⁻³ with a low coefficient of variation (CV = 11.8%). Significant differences in BD were observed across the urban agricultural sites, with Isinkan having the highest density of 1.56 Mg m⁻³ and Ologede 1 the lowest at 1.15 Mg m⁻³ (Table 1).

The soils at Emiloro and Eyin Ala sites were mulched with crop residues, contributing to their low BD values. The significantly lower BD at Ologede 1 could be attributed to the preparation of raised mounds for cultivation. These findings are consistent with previous studies that have shown lower BD in urban agricultural practices utilizing raised beds compared to cultivation on bare ground, and in mulched plots compared to un-mulched plots (Beniston *et al.*, 2015; Ugarte and Taylor, 2020). The PR_{dry} showed a similar trend to BD, with greater variability (CV = 30.5%). The WSA varied from poor (35.8%) at Ologede 2 to high (56.8%) at the Emiloro site, which was not significantly different from Ologede 1 (56.4%). The addition of organic residue at the mulched Emiloro site could have contributed to the significantly higher WSA (Zhou *et al.*, 2022).

The soil physical properties of the urban agricultural sites in Okitipupa are summarized in Table 2. The soil texture ranged from sandy loam to

Table 1: Soil physical properties of urban agricultural sites at Akure

Sites	Sand	Silt	Clay	Texture	BD	PR_{dry}	K,	WSA
	(g kg ⁻¹)			_	(Mg m ⁻³)	(MPa)	(cm hr-1)	(%)
Ologede 1	611 ^b	286 ^b	103 ^b	SL	1.15"	0.68°	25.8 ^d	56.4 ^{cd}
Kajola	614 ^b	282b	104^{b}	SL	1.23b	0.75 ^{nb}	15.4b	50.9b
Isinkan	694°	232*	74*	SL	1.56d	1.35°	10.6*	51.8 ^b
Ologede 2	548*	358°	94 ^b	SL	1.48°	1.28c	14.0 ^b	35.8ª
Eyin Ala	674°	252 ^{sb}	74*	SL	1.25 ^b	0.78^{b}	20.6°	52.3bc
Emiloro	624 ^b	282 ^b	94 ^b	SL	1.21 ^b	0.75 ^{ab}	15.5 ^b	56.8d
Pr (>F)	0.001	0.01	0.005		0.001	0.03	0.001	0.009
min.	514	222	62		1.11	0.67	9.9	34.2
max.	697	392	107		1.59	1.40	27.0	58.7
mean	627	282	91		1.31	0.93	16.9	50.7
SD	51	44	15		0.16	0.29	5.2	7.4
CV (%)	8.2	15.6	16.1		11.8	30.5	30.8	14.7

Means followed by the same letter in a column are not statistically different at $\alpha \le 0.05$. SD = standard deviation; CV = coefficient of variation. SL = Sandy loam.

Table 2: Soil physical properties of urban agricultural sites at Okitipupa

Sites	Sand	Silt	Clay	Texture	BD	PRdry	K _s	WSA
	(g kg ⁻¹)			_	(Mg m ⁻³)	(MPa)	(cm hr ⁻¹)	(%)
Oke Aye	798	105 ^d	9 7 ⁶	LS	1.25 ^b	0.42°	67.6	62.2 ^d
Ojokodo	811	102d	87×	LS	1.41°	1.09^{b}	86.1	54.0bc
Coastal Hotel	811	76ab	113°	SL	1.46°	0.66ab	72.3	50.3b
Oyesanmi	826	75ª	99b	LS	1.03 ^a	0.23*	46.3	62.7^{d}
Farm Settlement	826	82ab	92ah	LS	1.05°	0.28a	47.8	58.7°
Oke Oyinbo	798	85°	117°	SL	1.45°	1.03b	44.3	42.7ª
Pr (>F)	0.112	0.008	0.002		0.001	0.027	0.353	0.001
min.	781	62	67		0.87	0.07	30.9	39.9
max.	866	121	127		1.51	1.68	120.9	67.0
mean	818	85	96		1.27	0.62	60.7	58.4
SD	28	18	19		0.19	0.45	26.1	11.6
CV (%)	3.4	20.9	19.9		15.2	72.3	43.1	19.8

Means followed by the same letter in a column are not statistically different at $\alpha \le 0.05$. SD = standard deviation; CV = coefficient of variation. LS = Loamy sand, SL = Sandy loam.

loamy sand. The soil texture ranged from sandy loam to loamy sand, with differences possibly attributed to the higher clay content at Coastal Hotel (Clay = 113 g kg⁻¹) and Oke Oyinbo (Clay = 117 g kg⁻¹) sites, resulting in a sandy loam texture. The BD in the urban agricultural sites in Okitipupa was generally low, ranging from 1.03 Mg m⁻³ at Oyesanmi to 1.46 Mg m⁻ ³ at Coastal Hotel site, with low variability (CV = 15.2%). The loose, non-compact, and sandy nature of the urban agricultural soils could have contributed to the generally low BD reported (Huang and Hartemink, 2020). The PR_{dry} was also low, showing a similar trend to BD, indicative of the non-compact nature of the urban agricultural soils. The soils are highly porous, with K_s values ranging from 30.9 to 120.9 cm hr⁻¹, with a mean of 60.7 cm hr⁻¹. The variability in K_s is high (CV = 43.1%), but there were no significant differences among the sites in Okitipupa. The highest K_s (86.1 cm hr⁻¹) was recorded at Ojokodo, while the lowest (44.3 cm hr⁻¹) was observed at the Oke Oyinbo site (Table 2). Olson et al. (2013) noted that the coarse texture, larger pore sizes, and lower clay content promote rapid water infiltration in non-compacted sandy soils.

Soil chemical properties in relation to soil quality

The results show that the soil pH levels across the urban agricultural sites in Akure were relatively consistent, with minimal variability (CV = 7.1%) as shown in Table 3. The pH ranged from 5.91 to 6.76, with an average of 6.39. Most of the soils were classified as slightly acidic (72.2%) and the rest as moderately acidic (27.8%). The C_{org} in the urban agricultural soil ranged from 6.05 to 19.65 g kg⁻¹, showing moderate variability (Table 3). Significant variations were observed among the sites, with the lowest C_{org} (7.21 g kg⁻¹) at Ologede 2 and the highest (16.51 g kg⁻¹) at Ologede 1, which was not significantly different from Eyin Ala (15.62 g kg⁻¹), Emiloro (15.45 g kg⁻¹), Isinkan (14.88 g kg⁻¹), and Kajola (14.07 g kg⁻¹). The C_{org} concentrations in this study were lower compared to previous studies on urban agricultural soils. For instance, Ugarte and Taylor (2020) reported C_{org} levels ranging from 53.0 to 179 g kg⁻¹ in urban agricultural soils in Chicago, while McIvor et al. (2012) found Corg concentrations in urban garden plots ranging from 41.0 to 80.2 g kg⁻ ¹. The values for C_{org} in the soils studied were notably lower, indicating potential disturbances, limited vegetative biomass input, or minimal prior application of organic amendments (Beniston *et al.*, 2015). The N_{tot} ranged from 0.73 g kg⁻¹ to 3.63 g kg⁻¹, with an average content of 2.09 g kg⁻¹. The N_{tot} showed high variability with a CV of 41.6%. The N_{tot} in the urban agricultural sites was generally low and exhibited a trend that was consistent with C_{org} levels.

An analysis of the macro-nutrient content in the urban agricultural soils of Akure revealed low mean concentrations of Mg (48.1 mg kg⁻¹), Ca (142.4 mg kg⁻¹), and K (56.0 mg kg⁻¹). In contrast, AvP (9.25 mg kg⁻¹) and Na (139.0 mg kg⁻¹) were found to have moderate mean concentrations (Table 3). Significant variability in the levels of AvP, Mg, Ca, and Na were identified, with K showing moderate variability. From the ANOVA results, there were significant differences among the urban agricultural sites in AvP, Mg, and Ca concentrations. The rank for AvP concentration was Ologede 2 < Kajola < Isinkan < Eyin Ala < Ologede $1 \le$ Emiloro. For Mg, it was Kajola ≤ Ologede 2 ≤ Isinkan ≤ Emiloro < Eyin Ala ≤ Ologede 1, and for Ca, Kajola ≤ Ologede 2 < Emiloro \leq Isinkan < Ologede $1 \leq$ Eyin Ala. The macro-nutrient results in this study were within the range reported by Olaleye et al. (2020) from urban agricultural soils in Ilesha, southwest Nigeria.

The soil chemical properties of the urban agricultural sites in Okitipupa are presented in Table 4. Soil pH levels showed a high degree of consistency, exhibiting low variability (CV = 7.9%). The pH values varied between 4.93 and 5.96, with a mean of 5.64. All the soils were moderately acidic, except for the soils at the Ojokodo site, which were strongly acidic. High leaching of cations could have resulted in the acidic nature of the soils (Anikwe and Nwobodo, 2002). The Corg content in the urban agricultural soil ranged from 8.76 to 22.71 g kg⁻¹, showing moderate variability (CV = 27.6%) (Table 4). Significant differences in Corg were observed across the sites, with the lowest mean C_{org} recorded at Oke Oyinbo (9.37 g kg⁻¹) and the highest at Oyesanmi (22.10 g kg⁻¹), which was not significantly different from the value at Oke Aye (21.10 g kg⁻¹). The higher Corg levels at Oyesanmi and Oke Aye may be attributed to the greater vegetative biomass input at those sites (Beniston et al., 2015).

Table 3: Soil chemical properties of urban agricultural sites at Akure

Sites	pН	Ntot	Corg	AvP	Mg	Ca	K	Na
		(g kg ⁻¹)		(mg kg ⁻¹)	(mg kg ⁻¹)			
Ologede I	6.56	2.82°	16.51 ^b	15.86°	74.4°	203.8°	64.3	120.7
Kajola	6.70	1.29a	14.07 ^b	6.25 ^b	15.7ª	65.7	37.0	108.7
Isinkan	6.26	1.93ab	14.88^{b}	10.73°	51.9bc	160.0 ^b	60.7	139.3
Ologede 2	6.11	1.31*	7.21*	3.86°	24.7 ^{ab}	66.0°	51.7	141.7
Eyin Ala	6.42	2.69bc	15.62b	12.86d	66.3°	222.5°	68.3	130.0
Emiloro	6.32	2.48^{bc}	15.45 ^b	15.92°	55.5bc	136.3b	54.0	193.7
Pr (>F)	0.150	0.006	0.003	0.001	0.010	0.001	0.091	0.074
min.	5.91	0.73	6.05	3.16	15.2	55.0	33.0	100.0
max.	6.76	3.63	19.65	16.90	99.2	300.0	69.0	198.0
mean	6.39	2.09	13.96	9.25	48.1	142.4	56.0	139.0
SD	0.31	0.87	3.66	4.46	25.7	68.4	10.8	27.9
CV (%)	7.1	41.6	26.3	48.2	53.4	50.5	28.7	35.8

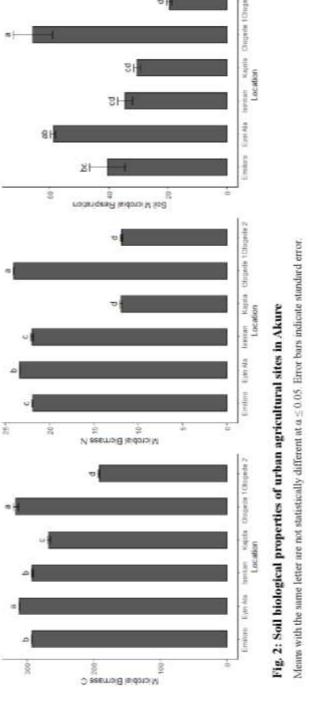
Means followed by the same letter in a column are not statistically different at $\alpha \le 0.05$. SD = standard deviation; CV = coefficient of variation.

Table 4: Soil chemical properties of urban agricultural sites at Okitipupa

Sites	pН	N _{tot}	Corg	AvP	Mg	Ca	K	Na
		(g kg·1)		(mg kg ⁻¹)				
Oke Aye	5.75	3.38°	21.20 ^d	7.78°	116.5 ^d	279.2°	63.3 ^d	63.3
Ojokodo	5.54	1.97ª	12.27 ^b	5.39	43.9ab	37.1°	27.5*	63.0
Coastal Hotel	5.79	2.73b	18.92°	5.66°	53.4bc	113.3b	37.5 ^b	62.3
Oyesanmi	5.95	3.60°	22.10^{d}	7.11bc	72.6°	208.3d	50.8c	63.3
Farm Settlement	5.73	3.26°	19.73°	6.26ab	71.1bc	175.0°	50.8°	63.7
Oke Oyinbo	5.65	1.79	9.37*	5.30°	41.7"	21.99	25.0ª	61.7
Pr (>F)	0.112	0.020	0.001	0.005	0.001	0.007	0.010	0.195
min.	4.93	1.63	8.76	4.46	24.8	11.3	22.5	56.0
max.	5.96	3.98	22.71	8.38	145.0	325.0	65.0	67.0
mean	5.64	2.79	16.93	6.25	66.5	139.1	42.5	62.8
SD	0.43	0.76	4.66	1.07	28.6	96.0	14.5	6.9
CV (%)	7.9	27.2	27.6	17.2	43.0	69.2	33.9	10.5

Means followed by the same letter in a column are not statistically different at $\alpha \le 0.05$. SD = standard deviation; CV = coefficient of variation.

The N_{tot} levels ranged from 1.63 to 3.98 g kg⁻¹, with a mean of 2.79 g kg⁻¹. There was moderate variability in N_{tot} , with a coefficient of variation of 27.2%. In our urban agricultural sites, N_{tot} levels were generally low and correlated with C_{org} levels (Udom and Ogunwole, 2015).

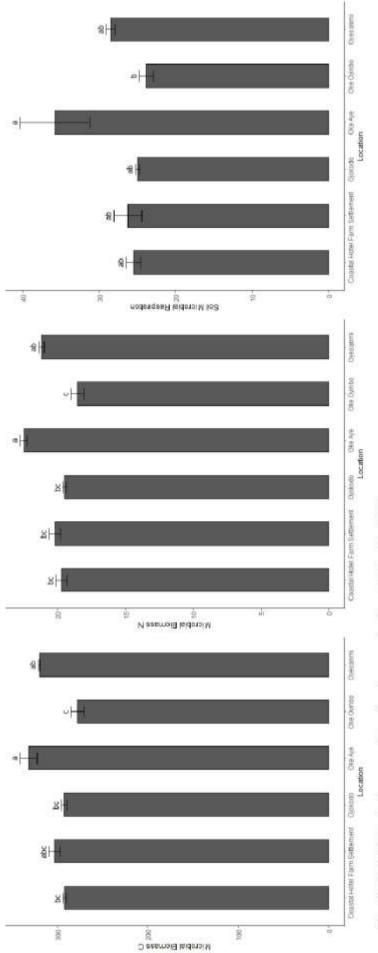

The macro-nutrient composition of the urban agricultural soils in Okitipupa exhibited low mean values for AvP (6.25 mg kg⁻¹), K (42.5 mg kg⁻¹), Na (62.8 mg kg⁻¹), Ca (139.1 mg kg⁻¹), and Mg (48.1 mg kg⁻¹) (Table 4). These low values suggest high leaching in the loose, sandy soils of Okitipupa (Esu *et al.* 2013). The study found that Ca (CV = 69.2%), Mg (CV = 43.0%), and K (CV = 33.9%) concentrations showed high variability, while Na (CV = 10.5%) and AvP (CV = 17.2%) levels exhibited moderate

variability. Significant variations in AvP, Mg, Ca, and K concentrations were observed among the urban agricultural sites, as indicated by the ANOVA results. The macro-nutrients were consistently higher at Oke Aye site, and this could be because of the high SOC in this site. Lal (2016) reported that SOC is a critical component that provides adsorption sites for cations such as Ca²⁺, Mg²⁺, K⁺, and Na⁺. It was emphasized that SOC enhances nutrient storage, making cations more available for plant uptake.

Soil biological properties in relation to soil quality

The results of the biological characteristics at the Akure urban agricultural sites are shown in Fig. 2. When compared to other urban agricultural sites, C_{mic} was significantly higher in Ologede 1 and Eyin Ala sites. This was probably due to the large amount of

carbon substrate available for breakdown and the increased soil aggregation (Beniston *et al.*, 2015). The extremely low C_{mic} values found at the Ologede 2 site imply that soil microbial activity could have been significantly reduced by human disturbances and the ensuing compaction (Tan *et al.*, 2008).



Microbial biomass N (N_{mic}) had a similar trend to C_{mic} . The concentration of N_{mic} was in the order Ologede 1 > Eyin Ala > Isinkan \geq Emiloro > Kajola \geq Ologede 2. According to Nugent and Allison (2022), removal of grass clippings and plant biomass was shown to decrease C_{mic} and ultimately N_{mic} in urban ecosystems. Soil microbial respiration (SMR) in the urban agricultural sites in Akure was moderately variable with a CV of 21.9%. The SMR ranged from 22.58 to 42.09 mg CO₂-C g⁻¹ soil with a mean of 27.49 mg CO₂-C g⁻¹ soil. The highest SMR was at Ologede 1, which reflected an active decomposition of SOM by microbial activities.

The biological characteristics at the Okitipupa urban agricultural sites show that C_{mic} and N_{mic} levels were significantly higher at the Oke Aye site compared to other urban agricultural sites (Fig. 3). This increase is likely due to the high input of SOM for microbial decomposition and favorable moisture conditions. In contrast, Oke Oyinbo has the lowest C_{mic} and N_{mic} levels, possibly due to limited organic inputs or intensive soil disturbance (Tan et al., 2008). Soil microbial respiration in the urban agricultural sites in Okitipupa reflects microbial activities. The highest SMR was recorded in the Oke Aye site (35.79 mg CO₂-C g⁻¹ soil), which was significantly different from Oke Oyinbo (23.87 mg CO₂-C g⁻¹ soil) but not from Oyesanmi (28.51 mg CO₂-C g⁻¹ soil), Farm Settlement (26.25 mg CO₂-C g⁻¹ soil), Coastal Hotel (25.51 mg CO₂-C g⁻¹ soil), and Ojokodo (25.01 mg CO₂-C g⁻¹ soil) sites.

Inter-relationship between urban agricultural sites and management options

Principal Component Analysis (PCA) was conducted on the dataset of 12 urban agricultural sites (Akure and Okitipupa) with 18 soil properties to identify key patterns in soil variability. The analysis reduced the dataset dimensionality, with the first two principal components (PCs) explaining 75.4% of the variance. PC1 captures physical properties such as texture and K_s, while PC2 reflects chemical fertility driven by C_{org}, N_{tot}, and AvP. Sites like Oke Oyinbo, Ojokodo, and Coastal Hotel with high K_s and sand content score high on PC1, indicating coarsetextured, well-drained soils. On the other hand, sites like Isinkan, Emiloro, Eyin Ala, and Ologede 1 with higher C_{org} and nutrient levels align with PC2, reflecting fertile soils.

Means with the same letter are not statistically different at $\alpha \le 0.05$. Error bars indicate standard error. Fig. 3: Soil biological properties of urban agricultural sites in Okitipupa

The PCA biplot illustrates site dispersion, with clusters of sites like Oyesanmi, Oke Aye, and Farm Settlement near nutrient vectors with high microbial activity, and Ologede 2 and Kajola in a distinct region with high soil compaction and poor WSA, highlighting urban soil heterogeneity (Fig 4). Urban soil heterogeneity is usually driven by texture, fertility, and management practices (Pickett and Cadenasso, 2009; Nugent and Allison, 2022).

Hierarchical clustering grouped the 12 sites into 4 clusters based on texture, compaction, and fertility gradients, as shown by the dendrogram. This can guide site-specific management strategies (Fig. 5). Cluster 1 includes Oke Oyinbo, Coastal Hotel, and Ojokodo sites with sandy, acidic, and well-drained nutrient-poor soils, presenting challenges agriculture without interventions. To improve these soils, incorporating organic amendments compost and manure to enhance nutrient retention and microbial activity is crucial. Additionally, using leguminous cover crops and targeted nitrogen and phosphorus fertilizer applications are recommended management options for these soils (Beniston et al., 2015). Cluster 2 comprises Ologede 2 and Kajola, characterized by compacted soils with poor structure. To address this, deep tillage and planting deep-rooted cover crops are recommended to enhance porosity. Over-tilling should be avoided as this can destroy soil aggregates and exacerbate compaction in the long term. Incorporating organic amendments can improve aggregate stability, while raised beds can also alleviate compaction issues by offering loose growing media (Pickett and Cadenasso, 2009; Bodner et al., 2021). Cluster 3 comprises Oke Aye, Farm Settlement, and Oyesanmi, characterized by fertile, loamy soils with high Corg, Ntot, and microbial activity (C_{mic} and N_{mic}), making them ideal for agriculture. To maintain soil quality and prevent degradation, it is recommended to regularly add OM. Crop rotation with legumes and cover cropping can help maintain N levels, prevent nutrient depletion, and enhance soil biodiversity. Cluster 4 includes Isinkan, Ologede 1, Emiloro, and Eyin Ala. These sites have moderate fertility and soils that are prone to erosion. They may be suitable for specific crops but may require amendments. The use of cover crops and mulching can enhance fertility and reduce erosion in these sites. Implementing minimal or conservation tillage practices can also help reduce soil disturbance and erosion. The PCA and hierarchical clustering in this study help guide urban agriculture by identifying sites needing remediation, amendments, or immediate use.

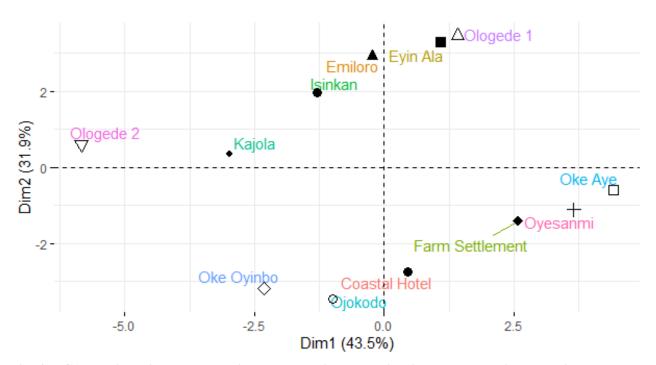


Fig. 4: PCA relationship among studied urban agricultural sites in respect to soil properties

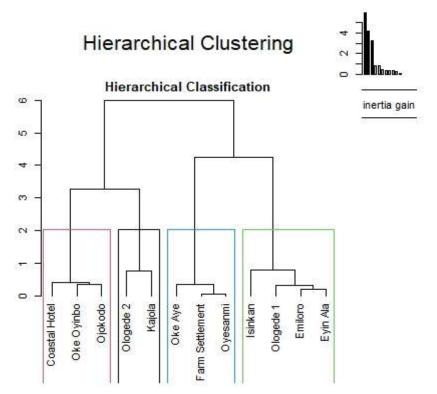


Fig. 5: Hierarchical clustering of 12 urban agricultural sites calculated based on soil properties

Conclusions

An assessment of soil quality across 12 urban agricultural sites in Akure and Okitipupa, southwest, Nigeria, was carried out revealing significant heterogeneity in physical, chemical, and biological properties that influenced the sites' potentials for agriculture. Principal component analysis and hierarchical clustering identified four distinct soil clusters, ranging from sandy, nutrient-poor soils to fertile, loamy soils, each requiring specific management strategies to optimize productivity. Sandy, acidic soils (Oke Oyinbo, Coastal Hotel, and Ojokodo) benefit from organic amendments and cover crops, compacted soils (Ologede 2 and Kajola) require deep tillage and raised beds, fertile loamy soils (Oke Aye, Farm Settlement, and Oyesanmi) need crop rotation and minimal tillage, and erosionprone soils (Isinkan, Ologede 1, Emiloro, and Eyin Ala) demand mulching and conservation tillage. These tailored interventions address challenges like compaction, nutrient deficiency, and erosion, enhancing the sustainability of urban agriculture. The results underscore the importance of site-specific soil management to support food security and sustainable urban development in Nigeria, with implications for other tropical urban regions. Future research should focus on long-term monitoring of soil health and crop performance under these management practices to validate their efficacy and adaptability.

Reference

Abdu, N., Agbenin, J.O., and Buerkert, A. (2011). Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long-term wastewater irrigation in Kano, northern Nigeria. *Journal of Plant Nutrition and Soil Science*, 174(3): 447–458.

Abdu, N., Agbenin, J.O., and Buerkert, A. (2012). Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, Northern Nigeria. *Environmental Monitoring and Assessment*, 184(4): 2057–2066.

Abdulkadir, A., Leffelaar, P.A., Agbenin, J.O., and Giller, K.E. (2013). Nutrient flows and balances in urban and peri-urban agroecosystems of Kano, Nigeria. *Nutrient Cycling in Agroecosystems*, 95(2): 231–254.

Adelana, A.O., Aiyelari, E.A., Are, K.S., and Oluwatosin, G.A. (2023a). Influence of urban land use types on ecosystem services in two rapidly urbanizing cities of southwestern Nigeria. *Environmental Monitoring and Assessment*, 195(11): 1279.

Adelana, A.O., Aiyelari, E.A., Oluwatosin, G.A., and Are, K.S. (2023b). Soil properties that differentiate urban land use types with different

- surface geology in Southwest Nigeria. *Urban Ecosystems*, 26(1): 277–290.
- Aduloju, O.T.B., Akinbamijo, O.B., Bako, A.I., Anofi, A.O., and Otokiti, K.V. (2024). Spatial analysis of urban agriculture in the utilization of open spaces in Nigeria. *Local Environment*, 29(7): 932–950.
- Alhassan, A.B., Chiroma, A.M., Kundiri, A.M., Bababe, B., and Tekwa, I.J. (2021). Utilizing urban refuse wastes as soil amendment in sub-Saharan Africa: Prospects and challenges in the Nigerian context. *Agro-Science*, 20(3): 53–64.
- Anikwe, M.A.N., and Nwobodo, K.C.A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. *Bioresource Technology*, 83(3): 241–250.
- Beniston, J.W., Lal, R., and Mercer, K.L. (2015). Assessing and managing soil quality for urban agriculture in a degraded vacant lot soil. *Land Degradation and Development*, 27(4): 996–1006.
- Bodner, G., Mentler, A., and Keiblinger, K. (2021). Plant roots for sustainable soil structure management in cropping systems. In Z. Rengel and I. Djalovic (Eds.), *The Root Systems in Sustainable Agricultural Intensification* (1st ed., pp. 45–90). Wiley.
- Caputo, S. (2022). Recent Developments in Urban Agriculture. In S. Caputo (Ed.), *Small Scale Soilless Urban Agriculture in Europe* (pp. 17–28). Springer International Publishing.
- Delbecque, N., Dondeyne, S., Gelaude, F., Mouazen, A.M., Vermeir, P., and Verdoodt, A. (2022). Urban soil properties distinguished by parent material, land use, time since urbanization, and pre-urban geomorphology. *Geoderma*, 413: 115719.
- Eigenbrod, C., and Gruda, N. (2015). Urban vegetable for food security in cities. A review. *Agronomy Sustain. Dev.*, 35(2): 483–498.
- Esu, I.E., Akpan-Idio, A.U., Otigbo, P.I., Aki, E.E., and Ofem, K.I. (2013). Characterization and classification of soils in Okitipupa local government area, Ondo state, Nigeria. *International Journal of Soil Science*, 9(1): 22–36
- Famuyiwa, A.O., Davidson, C.M., Ande, S., and Oyeyiola, A.O. (2022). Potentially toxic

- elements in urban soils from public-access areas in the rapidly growing megacity of Lagos, Nigeria. *Toxics*, 10(4): 154.
- Goldstein, B., Hauschild, M., Fernández, J., and Birkved, M. (2016). Urban versus conventional agriculture, taxonomy of resource profiles: A review. *Agronomy for Sustainable Development*, 36(1): 9.
- Grossman, R.B., and Reinsch, T.G. (2002). Bulk density and linear extensibility: Core method. In J.H. Dane and G.C. Topp (Eds.), *Methods of Soil Analysis Part 4: Physical Methods* (pp. 208–228). Soil Science Society of America, Inc.
- Huang, J., and Hartemink, A.E. (2020). Soil and environmental issues in sandy soils. *Earth-Science Reviews*, 208: 103295.
- Iwegbue, C.M.A., and Martincigh, B.S. (2018). Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria. *Environmental Science and Pollution Research*, 25(13): 12373–12390.
- Köhn, H.-F. and Hubert, L.J. (2015). Hierarchical Cluster Analysis. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels (Eds.), *Wiley StatsRef: Statistics Reference Online* (pp. 1–13). Wiley Publishers.
- Joimel, S., Cortet, J., Jolivet, C.C., Saby, N.P.A., Chenot, E.D., Branchu, P., Consalès, J.N., Lefort, C., Morel, J.L., and Schwartz, C. (2016). Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of The Total Environment, 545–546: 40–47.
- Kolawole, T.O., Oyelami, C.A., Olajide-Kayode, J.O., Jimoh, M.T., Fomba, K.W., Anifowose, A.J., and Akinde, S.B. (2023). Contamination and risk surveillance of potentially toxic elements in different land-use urban soils of Osogbo, southwestern Nigeria. *Environmental Geochemistry and Health*, 45(7): 4603–4629.
- Lal, R. (2016). Soil health and carbon management. *Food and Energy Security*, *5*(4): 212–222.
- Lal, R. and Shukla, M.K. (2004). *Principles of Soil Physics*. Marcel Dekker Inc., New York.
- Lamine, C., and Marsden, T. (2023). Unfolding sustainability transitions in food systems: Insights from UK and French trajectories. *Proceedings of the National Academy of Sciences*, 120(47): e2206231120.

- Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: An *R* package for multivariate analysis. *J. Stat. Software*, 25(1).
- Lee, G.-G., Lee, H.-W., and Lee, J.-H. (2015). Greenhouse gas emission reduction effect in the transportation sector by urban agriculture in Seoul, Korea. *Landscape and Urban Planning*, 140: 1–7.
- Macrotrends. (2025). *Nigerian Population Density* 1950-2025. https://macrotrends.net/__global-metrics/ (Accessed 10/03/2025).
- McIvor, K., Cogger, C., and Brown, S. (2012). Effects of biosolids based soil products on soil physical and chemical properties in urban gardens. *Compost Science and Utilization*, 20(4): 199–206.
- Nigerian Meteorological Agency. (2020). *Nigeria Climate Review Bulletin*. Nigeria Meteorological Agency No 015.
- Nugent, A., and Allison, S. D. (2022). A framework for soil microbial ecology in urban ecosystems. *Ecosphere*, *13*(3): e3968.
- Odewande, A.A., and Abimbola, A.F. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. *Environ. Geochem. Health*, 30(3): 243–254.
- Olaleye, A., Oyedele, D., Akponikpe, P., Kar, G., and Peak, D. (2020). Molecular scale studies of phosphorus speciation and transformation in manure amended and microdose fertilized indigenous vegetable production systems of Nigeria and Republic of Benin. *Soil Systems*, 4(1): 5.
- Olorundare, O.F., Ipinmoroti, K.O., Popoola, A.V., and Ayenimo, J.G. (2011). Anthropogenic influence on selected heavy metal contamination of urban soils of Akure city, Nigeria. *Soil and Sediment Contamination: An International Journal*, 20(5): 509–524.
- Olson, N.C., Gulliver, J.S., Nieber, J.L., and Kayhanian, M. (2013). Remediation to improve infiltration into compact soils. *Journal of Environmental Management*, 117: 85–95.
- Pasquini, M.W., and Alexander, M.J. (2004). Chemical properties of urban waste ash produced by open burning on the Jos Plateau: Implications for agriculture. *Sci. Total Environ.*, 319(1–3): 225–240.

- Pickett, S.T.A., and Cadenasso, M.L. (2009). Altered resources, disturbance, and heterogeneity: A framework for comparing urban and non-urban soils. *Urban Ecosystems*, *12*(1): 23–44.
- Pouyat, R.V., Yesilonis, I.D., Russell-Anelli, J., and Neerchal, N.K. (2007). Soil chemical and physical properties that differentiate urban landuse and cover types. *Soil Science Society of America Journal*, 71(3): 1010–1019.
- R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Reynolds, W.D., Elrick, D.E., Young, E.G., Amoozegar, A., Booltink, H.W.G., and Bouma, J. (2002). Saturated and field-saturated water flow parameters. In J.H. Dane and G.C. Topp (Eds.), *Methods of Soil Analysis Part 4: Physical Methods* (pp. 797–878). Soil Science Society of America, Inc.
- Salomon, M.J., Watts-Williams, S.J., McLaughlin, M.J., and Cavagnaro, T.R. (2020). Urban soil health: A city-wide survey of chemical and biological properties of urban agriculture soils. *Journal of Cleaner Production*, 275: 122900.
- Tan, X., Chang, S.X., and Kabzems, R. (2008). Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. *Biology and Fertility of Soils*, *44*(3): 471–479.
- Udom, B.E., and Ogunwole, J.O. (2015). Soil organic carbon, nitrogen, and phosphorus distribution in stable aggregates of an Ultisol under contrasting land use and management history. *J. Plant Nutrition Soil Sci.*, 178(3): 460–467.
- Ugarte, C.M., and Taylor, J.R. (2020). Chemical and biological indicators of soil health in Chicago urban gardens and farms. *Urban Agriculture and Regional Food Systems*, 5(1): e20004.
- Zhou, W., Sun, X., Li, S., Du, T., Zheng, Y., and Fan, Z. (2022). Effects of organic mulching on soil aggregate stability and aggregate binding agents in an urban forest in Beijing, China. *J. Forestry Res.*, 33(3): 1083–1094.
- Zibilske, L.M. (1994). Carbon mineralization. In Weaver, R.W. et al. (Eds.), Methods of Soil Analysis Part 2: Microbiological and Biochemical Properties (pp. 835–863). Soil Science Society of America, Inc.